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Basic Approach

We can observe galaxies at many difterent redshifts

What we cannot see, nor ever hope to, is a movie of how
a real galaxy evolves with time.

(Real galaxies take hundreds of millions of years to change)
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Basic Approach

Yet, this is a basic feature of simulations

But currently, the only precise results of simulations are
the clustering and motion of matter on large scales.

Friday, October 26, 12



arXiv:1207.6105

Basic Approach

So, we combine the two:

Observations tell us how many galaxies there are;

Simulations tell us how often they merge together
and what happens when they do-—as well as how
to connect. galaxies observed at different times.

So, we ought to be able to reconstruct what happens
to stars (on average) in individual galaxies.
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Basic Approach

How do we match observed galaxies to halos in simulations?
No-one knows ahead of time.

So, we adopt a very flexible parametrization of the matching
and let computers search for the answer.
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So, we adopt a very flexible parametrization of the matching

and let computers search for the answer.
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Basic Approach

1. Choose a stellar mass - . -
halo mass (SMHM) relation @ % 7
from parameter space. e A
2. Find galaxy growth histories © . ‘ ‘
by applying the SMHM relation % O © @
() (©)
®

to dark matter merger trees. o
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Basic Approach

3. Derive the inferred stellar » »

mass functions and star = % - %ﬁ

formation rates. SV - i

4. Apply effects to simulate N " / b | :ﬁt

observational errors and & % - Z \

biases. i - YR
% % T

5. Compare to data and it | 'wmm Eisss

calculate likelihood of the ¢ “\1 % M % W

chosen SMHM relation. SV - S
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Basic Approach

1. Choose a stellar mass -

halo mass (SMHM) relation Z f
from parameter space.

2. Find galaxy growth histories
by applying the SMHM relation
to dark matter merger trees.

3. Derive the inferred stellar

: y y

mass functions and star 9\ 55/ I %ﬁ
formation rates. i . SM

4. Apply effects to simulate = B / W ===
observational errors and S | & 2 \
biases. M Z SM
5. Compare to data and g*m‘g: : » ﬁmﬂ} o =
calculate likelihood of the Ny & " 2 *Wm\
chosen SMHM relation. Sy - i
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Repeat as often as necessary to explore allowable solutions.
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Basic Approach

Data Sets:
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New calibrations of halo mass functions,
satellite fractions, and merger rates to z=8 from Bolshoi.
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Basic Approach

Data Sets:
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Results
Constraints on the M*/Mh ratio, useful for SAMs and hydro:
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Results

A clear picture of the star formation history of the Universe:
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Results

A clear picture of the star formation history of galaxies:
Time [Gyr]
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Results

A clear picture of the star formation history of galaxies:
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Results

Low-mass galaxies have had significantly different
star formation histories than high-mass galaxies
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Results

Constraints on Individual Star Formation Histories
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Results

Constraints on Individual Star Formation Histories
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Results

Constraints on Individual Star Formation Histories
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Suggestions that incompleteness is not an enormous problem:
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Results

We can also constrain the buildup of stars from mergers

- . o o o
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Results

We can also constrain when arzld where all stars were formed:
8 4 2 1 05 02 0

1014

[—

)
[
OV}

ek

)
[
(\9)

[ENN
[ENN

Halo Mass [Mo]
=

ek

@
[
@)

O

ek
-

== 4 6 8 10 12 13.8
Time Since Big Bang [Gyr]

Friday, October 26, 12



Stellar Mass [M,]

Results

We can also constrain when arzld where all stars were formed:
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Star Formation Ethciency
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Star Formation Efhiciency
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Star Formation Ethciency
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Star Formation Efficiency
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Results

This leaves a clear imprint on the historical conversion ratio:
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Star Formation Ethciency
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As Simple as Possible
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As Simple as Possible
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Future Directions
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Future Directions

Uncertainties in Calculating Stellar Masses / SFRs

Initial Mass Function

Stellar Pop. Synthesis Model
Metallicity, Dust Model

Star Formation History

Redshift

Photometry Errors

A S S O S

Source Separation
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Future Directions

Uncertainties in Calculating Galaxy Apparent Magnitudes
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Constraining directly to GGalaxy Color-Magnitude Diagrams
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Future Directions

Generating Mock Catalogs for Observers

Stellar Mass, SFR Catalogs already available

Catalogs with full galaxy colors planned.

arX1iv:1207.6105
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Future Directions

Constraining Cosmology

A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN
GALAXIES AND DARK MATTER.

ALEXIE LEAUTHAUD"?, JEREMY TINKER®, PETER S. BEHROOZI', MICHAEL T. BusHA®®, RisA H. WECHSLER"

ABSTRACT

We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy
clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort
has been invested in exploring each of these probes individually, attempts to combine them are still in
their infancy. These combinations have potential to elucidate the galaxy-dark matter connection and
the galaxy formation physics that is responsible for it, as well as to constrain cosmological parameters,
and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the

NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A
COMBINED ANALYSIS OF GALAXY-GALAXY LENSING, CLUSTERING, AND STELLAR MASS
FUNCTIONS FROM Z=0.2 TO Z=1

ALEXIE LEAUTHAUD'?, JEREMY TINKER®, KEVIN BUNDY®, PETER S. BEHROOZI®, RICHARD MASSEY®, JASON RHODES™*,
MATTHEW R. GEORGE", JEAN-PAUL KNEIBY, ANDREW BENSON’, RISA H. WECHSLER®, MICHAEL T. BUSHA”'", PETER
CaAPAK'', MARINA CORTES', OLIVIER ILBERT’, ANTON M. KOEKEMOER'®, OLIVER LE FEVRE", SIMON LiLLy'®, HENRY J.
MCCRACKEN'!, MARA SALVATO'®, TiM SCHRABBACK™'®, NICK SCOVILLE’, TRISTAN SMlTH"!, JAMES E. TAYLOR'’

Submitted to ApJ

ABSTRACT

Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak
lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample
variance and for scatter between stellar and halo mass, we model all three observables simultaneously
using a novel and self-consistent theoretical framework. Our results provide strong constraints on
the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1.
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Constraining Cosmology
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Cosmological Constraints from a Combination of Galaxy
Clustering and Lensing — III. Application to SDSS Data

Marcello Cacciato'®, Frank C. van den Bosch?, Surhud More?®, Houjun Mo?,
Xiaohu Yang®

ABSTRACT

We simultaneously constrain cosmology and galaxy bias using measurements of galaxy
abundances, galaxy clustering and galaxy-galaxy lensing taken from the Sloan Digi-
tal Sky Survey. We use the conditional luminosity function (which describes the halo
occupation statistics as function of galaxy luminosity) combined with the halo model
(which describes the non-linear matter field in terms of its halo building blocks) to
describe the galaxy-dark matter connection. We explicitly account for residual redshift
space distortions in the projected galaxy-galaxy correlation functions, and marginalize
over uncertainties in the scale dependence of the halo bias and the detailed structure of
dark matter haloes. Under the assumption of a spatially flat, vanilla ACDM cosmology,
we focus on constraining the matter density, €2,,, and the normalization of the mat-
ter power spectrum, og, and we adopt WMAP7T priors for the spectral index, ng, the

Hubble parameter, h, and the baryon density, {2,. We obtain that Q,, = 0.278”:8:8%2

and og = 0.76370:0% (95% CL). These results are robust to uncertainties in the ra-

Aial niamhar dancityr Aictrihntinn af catallite dalaviac wrhila allavring far nan_Paicenn

Friday, October 26, 12



w(0)

10.00
1.00
0.10

001

10.00
1.00
0.10

001

Future Directions

Constraining Cosmology
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Leauthaud et al. 2012
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Summary

Most of the stars in the Universe were formed in
halos similar in size to the Milky Way:
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Summary

Most of the stars in the Universe were formed in
halos similar in size to the Milky Way:

Unsurprisingly; this is where the gas to stars conversion
efficiency also peaks, at about 20-40% of available
hydrogen converted into stars.
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Summary

Most of the stars in the Universe were formed in
halos similar in size to the Milky Way:

Unsurprisingly; this is where the gas to stars conversion
efficiency also peaks, at about 20-40% of available
hydrogen converted into stars.

It’s more surprising that this efficiency has remained
P g y:
relatively constant over time!
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Summary

Declining Tau models are poor fits to galaxy
star formation histories, except for massive
galaxies at z<I.
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Summary

Declining Tau models are poor fits to galaxy
star formation histories, except for massive
galaxies at z<I.

Milky-way sized galaxies have gained a factor of a
few in stellar mass since z-1, but a factor of ~20 since z=2.
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Summary

Declining Tau models are poor fits to galaxy
star formation histories, except for massive
galaxies at z<I.

Milky-way sized galaxies have gained a factor of a
few in stellar mass since z-1, but a factor of ~20 since z=2.

High-redshift galaxies typically have rapidly
rising star formation histories, SFR - t"3 or t™4
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Summary

We’re working to improve cosmological
hydro simulations as well as semi-analytical models
to better reproduce observed star formation.
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Summary

We’re working to improve cosmological
hydro simulations as well as semi-analytical models
to better reproduce observed star formation.

Lots of data already available for you to use
(http://www.peterbehroozi.com/data.html)
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Summary

We’re working to improve cosmological
hydro simulations as well as semi-analytical models
to better reproduce observed star formation.

Lots of data already available for you to use
(http://www.peterbehroozi.com/data.html)

Look forward to cosmology constraints in the future!
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T'hank you for listening!
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Image Sources

John Davis; http:
apod.nasa.gov/

apod/
ap101118.html

Adam Block: http:

apod.nasa.gov/

apod/
ap090414.html

HUDF Working
Group; http://

apod.nasa.gov/

apod/
ap040309.html
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